New Galloylated Flavonoid Glycosides from Geranium stepporum DAVIS

by Didem Şöhretoğlu*^a), Mahmut Koray Sakar^a), and Olov Sterner^b)

Two new galloylated flavonoid glycosides, quercetin-3-O-(3"-O-galloyl)- β -glucopyranoside (1) and quercetin-3-O-(3"-O-galloyl)- β -galactopyranoside (2) were isolated from the aerial parts of *Geranium stepporum* along with the four known flavonoids, quercetin 3-O- β -glucopyranoside (3), quercetin 3-O- β -glucopyranoside (4), quercetin 3-O-(6"-O-galloyl)- β -glucopyranoside (5) and quercetin 3-O-(6"-O-galloyl)- β -glucopyranoside (5) and quercetin 3-O-(6"-O-galloyl)- β -glucopyranoside (6). The structure elucidation of the isolated compounds was accomplished by spectroscopic methods (UV, 1D- and 2D-NMR, and ESI-TOF-MS).

Introduction. – In the flora of Turkey, the genus *Geranium* L. (Geraniaceae) is represented by 35 species [1], some of which are traditionally used as antidiarrheal, antihemorrhoidal, antidiabetic, hemostatic, stomachic, diuretic, and for the treatment of stomach ulcers and internal bleeding [2]. The genus *Geranium* is known to contain various classes of compounds such as flavonoids [3][4], tannins [3][5] and essential oils [6]. As a part of our ongoing phytochemical studies on the polyphenolic compounds of Turkish *Geranium* species [3], we have investigated *G. stepporum* DAVIS, on which no report has been published previously. In this paper, we report the isolation and structure elucidation of the two new flavonoid glycosides quercetin-3-O-(3"-Ogalloyl)- β -glucopyranoside (1) and quercetin-3-O-(3"-O-galloyl)- β -galactopyranoside (2) from the title plant, together with four known flavonoids, quercetin 3-O- β glucopyranoside (3), quercetin 3-O- β -galactopyranoside (4), quercetin 3-O-(6"-Ogalloyl)- β -glucopyranoside (5), quercetin 3-O-(6"-O-galloyl)- β -galactopyranoside (6).

Results and Discussions. – The AcOEt soluble part of the crude MeOH extract of the aerial parts of *G. stepporum* was first fractioned by *Sephadex LH-20*, and compounds 1-6 were obtained by further column chromatographic (silica gel and *Sephadex LH-20*) separations.

Compound **1** was isolated as a yellow amorphous powder. The molecular formula was determined as $C_{28}H_{24}O_{16}$ by positive-ion ESI-TOF-MS ($[M+H]^+$ at 617.1133). Fragment ions were observed at m/z 303 corresponding to [aglycone + H]⁺ and at m/z 315 corresponding to [glucose + gallic acid + H]⁺. The UV spectrum of **1** (MeOH) exhibited maxima at 259 and 355 nm, suggesting the presence of a flavonol derivative.

The ¹H-NMR spectrum of **1** (*Table*) showed two *meta*-coupled signals in the aromatic region at $\delta(H)$ 6.24 (d, J = 2.0) and 6.44 (d, J = 2.0) suggesting the presence of a 5,7-dihydroxy-substituted A ring of the flavonoid skeleton. A *doublet* of *doublets* at

^a) Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, TR-06100 Ankara (phone: +90-312-3051089; fax: +90-312-3114777; e-mail: didems@hacettepe.edu.tr)

^b) Organic Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

 δ (H) 7.62 (dd, J = 2.2, 8.0) and two doublets at δ (H) 7.75 (d, J = 2.2) and 6.92 (d, J = 8.0) which were observed as an ABX system revealed the 3',4'-dihydroxy functional structure of a flavonoid B ring. The appearance of a sharp singlet H-atom signal at $\delta(H)$ 7.18 (2 H) for the magnetically equivalent H-C(2'') and H-C(6'') H-atoms expressed the presence of a galloyl group. The anomeric H-atom resonance at $\delta(H)$ 5.46 (d, J = 8.0) and the signals in the region $\delta(H)$ 5.20–3.65 together with the corresponding Cresonances in the ¹³C-NMR spectrum of **1** indicated the presence of a β -glucopyranosyl unit. The ¹³C-NMR spectrum of 1 (Table) exhibited 28 signals; 15 of them were attributed to quercetin, six of them were attributed to a β -glucopyranosyl unit, while the remaining seven signals were attributed to a gallic acid moiety. In the ¹³C-NMR spectrum of 1, signals attributed to C(2''), C(3''), and C(4'') of the glucose residue were shifted -1.4, +1.2, and -1.9 ppm, respectively, comparing to those of quercetin 3-O- β -glucopyranoside (3), suggesting the galloyl moiety to be positioned at C(3'') of the glucose moiety. This assumption was supported by the HMBC correlation between H-C(3'') and C=O (galloyl). Furthermore, the HMBC correlation observed between the anomeric H-atom H-C(1'') of the glucose unit and C(3) of the quercetin moiety allowed us to assign the position of the sugar moiety at C(3). The complete assignments of 1 were achieved by 2D-NMR experiments (DQF-COSY, HMQC, and HMBC). From these data, the structure of compound 1 was established as quercetin-3-O-(3"-Ogalloyl)- β -glucopyranoside.

Compound **2** was isolated as a yellow amorphous powder. ESI-TOF-MS showed the $[M + H]^+$ peak at m/z 617.1122, corresponding to the molecular formula $C_{28}H_{24}O_{16}$. The UV spectrum of **2** in MeOH showed maxima at 259 and 359 nm, suggesting it to be a flavonol derivative.

The ¹H- and ¹³C-NMR spectra of compound **2** (*Table*) were similar to those of **1**, except for the signals due to the sugar moiety. Quercetin was revealed by the *meta*-coupled signals at $\delta(H)$ 6.25 and 6.44, in addition to the signals of a 1,3,4-trisubstituted aromatic ring (7.88 (d, J = 2.0), 7.64 (dd, J = 2.0, 8.0), 6.92 (d, J = 8.0)). Furthermore, the *singlet* signal at $\delta(H)$ 7.21 (2 H) for a tetrasubstituted aromatic ring was accounted for a galloyl residue. The signal of the anomeric H-atom appeared at $\delta(H)$ 5.39 (d, J = 8.0), and the anomeric C-atom resonance was observed at $\delta(C)$ 105.3. The chemical shifts of the sugar H-atoms were assigned to H–C(1'') ($\delta(H)$ 5.39), H–C(2'') ($\delta(H)$

	1			2		
	$\overline{\delta(\mathrm{H})^{\mathrm{b}}})$	$\delta(C)^{c})$	HMBC $(H \rightarrow C)$	$\overline{\delta(\mathrm{H})^{\mathrm{b}})}$	$\delta(C)^{c})$	HMBC $(H \rightarrow C)$
Aglycone						
C(2)		159.1			158.9	
C(3)		135.7			135.8	
C(4)		179.6			179.6	
C(5)		163.3			163.2	
H-C(6)	6.24 (d, J = 2.0)	100.1	C(5), C(7), C(8), C(10)	6.25 (d, J = 1.8)	100.1	C(8), C(10)
C(7)		166.2			166.3	
H-C(8)	6.44 (d, J = 2.0)	94.8	C(6), C(7), C(9), C(10)	6.44 (d, J = 1.8)	94.9	C(6)
C(9)		158.6			158.6	
C(10)		105.8			105.8	
C(1')		123.2			123.0	
H–C(2′)	7.75 (<i>d</i> , <i>J</i> = 2.2)	117.7	C(2), C(1'), C(3'), C(4')	7.88 $(d, J = 2.0)$	117.9	C(2), C(1'), C(4')
C(3')		146.1			146.0	
C(4')		150.0			150.2	
H-C(5')	6.92 (d, J = 8.0)	116.2	C(3'), C(6')	6.92 (d, J = 8.0)	116.3	C(3'), C(6')
H–C(6')	7.62 (dd , $J = 2.2, 8.0$)	123.4	C(2'), C(3'), C(4')	7.64 (dd , $J = 2.0, 8.0$)	123.1	C(2'), C(4')
Sugar						
H - C(1'')	5.46 (d, J = 8.0)	104.1	C(3)	5.39 (d, J = 8.0)	105.3	C(3)
H-C(2")	3.77 (dd, J = 8.0, 9.2)	74.4	C(1"), C(3")	4.21 (dd, J = 3.2, 8.0)	71.1	C(1"), C(3")
H-C(3")	5.20(t, J = 9.2)	79.4	C(2''), C(4''), C=O	4.98 (dd, J = 3.2, 10)	77.7	C(2"), C=O
H - C(4'')	3.68*	69.4	C(5"), C(6")	4.19*	67.8	C(2'')
H-C(5")	3.40 (ddd, J = 2.0, 4.8, 8.0)	78.5		3.64*	77.2	C(6")
CH ₂ (6") Galloyl	3.78*, 3.65*	62.4		3.57-3.69*	61.8	C(5")
C(1''')		121.9			121.7	
H–C(2''')	7.18 (s)	110.5	C(1'''), C(3'''), C(4'''), C=O	7.21 (s)	110.5	C(1'''), C(3'''), C(4'''), C=O
C(3''')		146.6	- ())		146.6	- ())
C(4''')		139.9			140.1	
C(5''')		146.6			146.6	
H–C(6‴)	7.18 (s)	110.5	C(1'''), C(5'''), C(4'''), C=O	7.21 (s)	110.5	C(1'''), C(5'''), C(4'''), C=0
C=O		168.4	-(,), 0 0		168.2	-(.), 0 0

Table. ¹*H*- and ¹³*C*-*NMR Data*^a) and *HMBC of* **1** and **2**. In CD₃OD; in ppm, *J* in Hz. Asterisks (*) mark overlapping signals.

^a) All $\delta(H)$ and $\delta(C)$ assignments are based on 2D-NMR (DQF-COSY, HMQC, HMBC). ^b) Recorded at 400 MHz. ^c) Recorded at 100 MHz.

4.21), H–C(3") (δ (H) 4.98), H–C(4") (δ (H) 4.19), H–C(5") (δ (H) 3.64), CH₂(6") (δ (H) 3.57–3.69) by DQF-COSY spectrum. All resonances of the H- and C-atoms were assigned by HMQC and HMBC experiments. The sugar was concluded to be β -galactopyranose by the ¹H- and ¹³C-NMR signals and the coupling constant of H–C(1") (J=8.0) [7]. In the ¹³C-NMR spectrum of **2**, signals of C(2"), C(3"), and C(4") of the galactose residue appeared to be shifted -2.2, +2.5, and -2.4 ppm, respectively, compared to those of quercetin 3-*O*- β -galactopyranoside (**4**), suggesting that the HO–C(3") group was acylated. HMBC between H–C(1") and C(3) assigned the position of the β -galactopyranosyl residue at C(3) of the aglycone, while correlation between H–C(3") and C=O (galloyl) suggested the gallic acid moiety to be attached to the β -galactopyranosyl unit at the C(3") position. From these results, the structure of compound **2** was identified as quercetin-3-*O*-(3"-*O*-galloyl)- β -galactopyranoside.

The known flavonol glycosides, quercetin 3-O- β -glucopyranoside (3) [3][7], quercetin 3-O- β -galactopyranoside (4) [3][7], quercetin 3-O-(6"-O-galloyl)- β -glucopyranoside (5) [3][7], and quercetin 3-O-(6"-O-galloyl)- β -galactopyranoside (6) [3], were identified by comparing their 1D- and 2D-NMR spectra as well as their ESI-TOF-MS data with those published in the literature.

According to *Davis*, the *Geranium* species in Turkish flora are classified under five groups (Groups A-E) depending on their morphological characters [1a]. In our previous studies on Turkish *Geranium* species, we have isolated some galloylated (2"-O- and 6"-O-) flavonoids from *Geranium tuberosum* L. subsp. *tuberosum* (Group C), where the presence of 6"-O-galloylated flavonoids was reported for the first time for the genus *Geranium* [3]. *G. stepporum* is also classified in Group C [1a]. Therefore, the presence of 6"-O-galloylated flavonoids (5 and 6) in this species may have a chemotaxonomical importance for the genus *Geranium*.

Experimental Part

General. TLC: precoated Silica gel 60 F_{254} (Merck) aluminum plates, elution with CHCl₃/MeOH/ H₂O mixtures; visualization by spraying 10% H₂SO₄, followed by heating at 105° for 1–2 min. Column chromatography (CC): silica gel 60 (SiO₂; 0.063–0.200 mm; Merck) and Sephadex LH-20 (Sigma). Optical rotations: Rudolph Autopol-IV Automatic polarimeter. UV Spectra: Bio-Tek Instruments, M-Quant Biomolecular spectrophotometer; λ_{max} in nm. IR Spectra: Perkin-Elmer, FT-IR System Spectrum BX, in cm⁻¹. NMR Spectra: Bruker DRX-400 spectrometer; at 400 MHz (¹H) and 100 MHz (¹GC); δ in ppm rel. to Me₄Si, J in Hz. ESI-TOF-MS: Waters-Micromass Q-TOF Micro instrument; in m/z.

Plant Material. Geranium stepporum DAVIS was collected from Kayseri, Pınarbaşı, Eğrisöğüt, in middle Anatolia, Turkey, on 6th of May 2006. A voucher specimen has been deposited with the Herbarium of the Faculty of Pharmacy, Hacettepe University, Ankara, Turkey (HUEF 06001).

Extraction and Isolation. The air-dried, powdered aerial parts of *G. stepporum* (273 g) were extracted with MeOH ($4 \times 2.0 \text{ l}$, 5 h each) at 35°, and then filtered. The combined MeOH extracts were evaporated to dryness under reduced pressure. The crude extract (43 g) was dissolved in H₂O (100 ml), and extracted with petroleum ether ($40-60^{\circ}$; PE; 4×100 ml), AcOEt (6×100 ml), and BuOH (4×100 ml), successively. The AcOEt-soluble fraction (20 g) was subjected to CC (*Sephadex LH-20* H₂O/MeOH $0 \rightarrow 100\%$) to afford 10 fractions (*Fr. A*–*J*) according to TLC. *Fr. E* (eluted with 30% MeOH) was subjected to CC (*Sephadex LH-20*, MeOH) to give four subfractions (*Fr. E*_{1–4}). *Fr. E*₂ was further chromatographed by CC (SiO₂, CHCl₃/MeOH 92:8) to yield **3** (5.0 mg) and **4** (4.0 mg). *Fr. F* (eluted with 40% MeOH) was re-chromatographed by CC (*Sephadex LH-20*, MeOH) to yield **5** (4.5 mg) and **6** (4.0 mg). *Fr. H* (eluted with 50% MeOH) was subjected to CC (*Sephadex LH-20*, MeOH) and compounds **1** (5.0 mg) and **2** (3.5 mg) were obtained.

Quercetin-3-O-(3"-O-galloyl)- β -glucopyranoside (=2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 3-O-[(3,4,5-Trihydroxyphenyl)carbonyl]- β -D-glucopyranoside; **1**). Amorphous, yellow powder. [a]_D² = -15.9 (c = 0.1, MeOH). UV (MeOH): 259 (4.08), 269 (4.02), 355 (3.65). IR: 3308, 1693, 1658, 1605, 1504, 1309, 1198. ¹H- and ¹³C-NMR: Table. ESI-TOF-MS: 617.1133 ([M+H]⁺, C₂₈H₂₅O₁₆; calc. 617.1143), 315 ([glucose + gallic acid + H]⁺), 303 ([aglycone + H]⁺).

Quercetin-3-O-(3"-O-galloyl)- β -galactopyranoside (=2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4oxo-4H-chromen-3-yl 3-O-[(3,4,5-Trihydroxyphenyl)carbonyl]- β -D-galactopyranoside; **2**). Amorphous, yellow powder. [α]₂₀^D = -18.9 (c=0.1, MeOH). UV (MeOH): 259 (4.39), 272 (4.43), 359 (4.05). IR: 3306, 1702, 1660, 1604, 1500, 1307, 1191. ¹H- and ¹³C-NMR: Table. ESI-TOF-MS: 617.1122 ([M + H]⁺, C₂₈H₂₅O₁₆; calc. 617.1143).

REFERENCES

- a) P. H. Davis, in 'Flora of Turkey and East Aegean Islands', Ed. P. H. Davis, University Press, Edinburgh, 1966, Vol. 2, pp. 441–474; b) A. Güner, in 'Flora of Turkey and East Aegean Islands', Ed. A. Güner, N. Özhatay, T. Ekim, K. H. C. Başer, University Press, Edinburgh, 2000, Suppl. II, pp. 104–105.
- [2] T. Baytop, 'Theraphy with Medicinal Plants in Turkey: Past and Present', Nobel Tıp Kitabevi, Istanbul, 1999, p. 163; L. Bremness, 'Herbs', Dorling Kindersley, London, 1995.
- [3] D. Şöhretoğlu, Ph.D. Thesis, University of Hacettepe at Ankara, 2008.
- [4] Z. Ş. Akdemir; İ. İ. Tatlı, İ. Saracoğlu, U. B. İsmailoğlu, İ. Şahin-Erdemli, İ. Çalış, *Phytochemistry* 2001, 56, 189.
- [5] D. Ercil, M. Kaloga, O. A. Redtke, M. K. Sakar, A. Kiderlen, H. Kolodziej, Turk. Chem. 2005, 29, 437.
- [6] A. Bara, H. Norouzi-Arasi, S. Sedaghat-Sharehjini, N. Baldovini, Nat. Prod. Commun. 2006, 1, 387.
- [7] J. B. Harborne, T. J. Mabry, 'The Flavonoids: Advances in Research', Chapman and Hall Ltd., London, 1982.

Received September 8, 2008